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Frictional damping in the sliding Regime
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- Non-linear effects which can lead to unexpected failures
- Example: effects on vibration of a fan blade (dovetail joint) and other 

frictional interfaces of engines.  These include other blade retention 
(firtrees/dovetails in compressor/turbine, and general casing damping, 
e.g. by bolted flange joints.



Rigid Body Motion Problem (sliding)
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- No analytical model for steady state behaviour in this problem



What we know about frictional damping 
models
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Coulomb friction oscillator: modelling and responses to harmonic loads and base excitations, 
Hong and Liu, 1999

- Previous work considers
- Moving belt problem
- Combined Coulomb and viscous damping
- Direct force application to mass

- No consideration of exactly our problem 

Direct 
application of 
force to mass

Moving belt 
problem

Direct application of 
force to mass and 

base excitation



Frictional contact 

5

Coulomb model:

- simplest model 

- widely used

- Static and dynamic friction is assumed equal
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Formulation
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Coulomb friction oscillator: modelling and responses to harmonic loads and base excitations, 
Hong and Liu, 1999
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What we know 

7
Coulomb friction oscillator: modelling and responses to harmonic loads and base excitations, 
Hong and Liu, 1999
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What we know 
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Coulomb friction oscillator: modelling and responses to harmonic loads and base excitations, 
Hong and Liu, 1999

- Stops of finite duration conditions:
- Velocity is zero
- Spring force (magnitude) less than limiting friction value

- Start-to-slide conditions:



Example Response:
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Animation showing the response of a simple case



Quasi-static & Dynamic Responses
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0

Quasi-static stick

Quasi-static slip

Motion even though spring 
force less than friction force

y(t)

x(t)

Quasi static Response
Dynamic Response



Low friction – ‘normal’ stops at ends only
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1

Spring force is greater than friction when velocity reaches zero



Higher friction – ends stops + intermediate
stops

1
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Velocity is non-zero for all time when spring force is less than friction



Solution: for periods of Motion
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- Solution for each phase

- Using boundary conditions to obtain the solution for a steady state cycle 
directly
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Discontinuity in 
acceleration

Mass acceleration

Base acceleration



What was puzzling 
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Coulomb friction oscillator: modelling and responses to harmonic loads and base excitations, 
Hong and Liu, 1999

- Found asymmetric response to symmetric loading
- Found odd number of stops 

- Focused mainly on low frequency ratios



Results
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- Results from a single case
- Frequency ratio 0.5
- Coefficient of friction 0.5
- Dimensionless amplitude 1.2



Results
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- Considering the parameter space
- Friction and amplitude considered separately

- Frequency ratio 0.5
- Contours of equal response amplitude



What we are planning to do
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- Which conditions give rise to which boundaries
- Multiple stop conditions
- Different conditions describing different parts of the boundary

- Annotated version of Ciavarella plot



What we are planning to do
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- Closed form solution for no stop case
- Analytic time marching

- Determining analytic constants
- Applying non-numeric solving methods

- Multiple degrees of freedom



What we know

2
0

On the limits of quasi-static analysis for a simple Coulomb frictional oscillator in response to 
harmonic loads, Papangelo and Ciavarella, 2014

- We can get any even number of stops

- We have a symmetric phase portrait
- No evidence of ‘non-periodic solutions’
- Oscillations occur ‘at the natural frequency during the slip phases’



1

1.1 General properties of contacts 

Prof. D.A. Hills

(with Hendrik Andresen)

Department of Engineering Science

University of Oxford

January 2018

“In WP1, research will aim at improving the understanding of the physics of 
friction contacts in order to develop and validate advanced models for 
dynamic simulations of turbomachinery models. There is a strong need for 
advanced contact models, since state-of-the-art contact models are
unsatisfactory: when experimental validation is performed, an intense 
tuning of the models is necessary for numerical predictions to accurately 
match the experimental results. It is the symptom of a lack of knowledge in 
the contact behaviour.”



Contents
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• Taxonomy of contacts

• General properties
Frictional slip
Onset of slip
Partial slip

• Coupled and uncoupled contacts
Why do they behave differently?

• Frictional damping
Sliding regime



Types of contacts (1a)

R

P

–a a

1. (a) Incomplete and non-conformal  a<<R

p ~ s1/2

• contact width increases with applied load

• contacting bodies have a common tangent at the contact edges

• contact pressure falls continuously to zero at the contact edges 

• both bodies may be represented by half-planes

Examples for incomplete contacts: 
• roller bearing (picture)

• gear teeth flanks

• convex cam shaft

• rail way wheels
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Types of contacts (1b)
1. (a) Incomplete but conformal  a~ R

p ~ s1/2

• bodies require formulation for domain shape, e.g. disk and anti-disk

Examples for incomplete but conformal contacts: 
• bearing bolt (picture)

• journal bearing
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a–a

P

Analysis by wedge theory

p ~ sλ-1

Types of contacts (2)

2. Complete

• indenting punch has sharp corners

• contact width is fixed by the size of the punch; independent of the contacting load

• relative curvature of the bodies is discontinuous at the contact edges: singular
contact pressure results

• idealization by a half-plane is certainly inappropriate

Examples for complete contacts: 
• shipping container on the ground (picture)

• oil drum on the ground

• electric motor on a pedestal
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Types of contacts (3)

P

Contact will ‘snap’ to reduced contact 
size upon application of very small load

R2 - cylinder

R1 - Hole

a. If R2 < R1 incomplete
b. If R2 > R1 stationary → smooth 

recede
c. If R2 = R1 snap recede

P

Examples for receding contacts: 
• flanged joint (picture)

• bolt array

• high strength friction grip
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Types of contacts (4)

• Both bodies simultaneously define the edge of the contact

• The only kind of contact which has a finite contact pressure at the edge

Examples for ‘common edge’ contacts: 
• connecting rod (picture)

• equal flanges
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The point-wise concept of Friction
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Partial Slip Conditions

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1. We may sometime use strains rather than displacements.

2. Frictional contact are history dependent.  A knowledge of 
the current  loads alone is insufficient to be able to specify the 
slip/stick state.



Normal load – ‘convection’

P

1. Normal loads will cause surface particles to displace.
2. If the bodies have the same elastic constants points on bodies 

move by same amount  →  no surface shear tractions
3. If materials are different →  anti-symmetric surface shear [coupling]
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Transverse Loading

Q

x

y

P

Sequential application of shear forces on formed contact.

Note shear applied in plane of contact (or moment results)
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Partial slip solution

-a -b b a

p(x)

q(x)/f

q’(x)

Contact geometry

Contact tractions

Conditions for partial slip

Q

x

y

P
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Conditions for partial slip

-a -b b a

q(x)= fp(x)
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Ciavarella – Jäger theorem (shown for Hertz)

a-a

p(x)
q (x)/f = p(x)sl

a-a

du/dx
Sliding solution

Correction

-a -b b a

p(x)

q(x)/f

q’(x)

a-a b-b

qˊ(x)
a-a

du/dx

b-b

Partial slip solution

a-a

du/dx

b

-b

Superposition of two Sliding solutions to achieve a Partial Slip solution

Tractions                                     Surface displacements
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Recent alternative: start from a fully stuck solution

q (x) =st Q/ (a -x )π
2 2 1/2

a-a

p(x)

Adhered solution

Corrective displacement a-a b-b

q (x)cor

a-a b-b

b (x)x

-a -b b a

p(x)

q(x)/f

q’(x)

Partial slip solution

a-a b-b

b (x)x

Distribute 
dislocations
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Sequential Loading

Q

P

dQ/dP = f

sliding

Loading trajectory Shear tractions

-a -b b a

p(x)

q(x)/f

q’(x)
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Varying normal load

Q

P

dQ/dP = f

sliding

stuck

partial slip

dQ/dP > f

dQ/dP < f}
}

X

This trajectory would 
give partial slip
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Geometric Coupling
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Any difference in elasticity domain shape will cause some
coupling

In the 
neighbourhood of a 
singular point 
coupling severe 
q(0) ~ 54% p(0)
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• Appropriate Airy stress function (Timoshenko and Goodier, 1950)

• Complete state of stress in polar coordinates is given by 
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– the Flamant 
Solution
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• These stresses can be expressed in Cartesian coordinates as

where
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• Surface displacements in Cartesian coordinates (set  = + /2)

where

sgn(x) = 1     if   x > 0

sgn(x) = –1   if   x < 0

• Note that the displacements are not absolute quantities

• Therefore it is difficult to use the equations above to formulate the contact
problem

• A better method is to relate the surface loads to the gradient of the surface
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due to normal pressure

due to shearing traction

due to normal pressure

due to shearing traction

Normal displacement gradient
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slope at x; and p(x) affects 
only strain at x.
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• Adding together the two effects gives the following pair of equations: 

• This pair of equations provides a useful set of influence functions for the

loading of a half plane.

Total normal and shear displacement gradients
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• Both of the contacting bodies are deformable. Therefore we need to
establish the effect of the interface tractions on the combined deformation.

General plane contact problem formulation

If the bodies 
could 

interpenetrate
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• For generality, assume that the contacting bodies have different elastic
constants.

• The normal surface displacements are:

(Body 1)

(Body 2)

• Suppose that the two bodies could freely interpenetrate each other, and
the amount of overlap is h(x).

• The two bodies must now deform such that the relative surface normal
displacement, v1(x) – v2(x) = h(x).

• Therefore
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where the compliance of the bodies and the influence of their mismatch for
plane strain, are respectively
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• Similarly, the relative surface tangential displacement, u1(x) – u2(x) = g(x).
Giving,

• Relative surface normal & tangential displacement equations will enable any
plane contact problem to be solved.

• Now, consider relative surface normal displacement equation. The effect of
shearing traction will vanish if either:

1. The contact is perfectly lubricated, or

2. Dundurs’ constant,  = 0 normally due to elastically similar bodies.
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• If either of the conditions above is fulfilled, the following simplified equation
results

• This is a Cauchy singular integral equation of the first kind.

• The unknown quantity, p(x), is contained within the integral, and an
inversion formula is needed. See Appendix B.

 



 a

a x
dp

x
h

A 



)(11



29

• The surface profile can be idealized as a parabola, giving

where

R1, R2 are the radii of curvature of the cylinders

• Relative surface normal displacement is now written as

Example 1 : Hertzian contact
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• Normalise the interval of integration by making the substitutions

 = ar and x = as

so that

• Using the inversion formula

• Note that the consistency equation is automatically satisfied.
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• Contact half-width, a may be found by

so that

and
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• Consider the indentation of a half-plane by a rigid flat-ended punch

• The value of the compliance is

• The punch-end is flat slope is zero

• Relative surface normal displacement is now written as

Example 2 : Indentation by a Punch
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• Singular solution at both ends is expected

• Using the inversion formula

• The value of the constant is found by ensuring vertical equilibrium, giving
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(a) Hertzian contact (b) Wedge indentation
(c) Flat ended punch (d) Punch generating uniform pressure

A comparison of indenter profiles
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(a) Hertzian contact (b) Wedge indentation
(c) Flat ended punch (d) Punch generating uniform pressure

Resulting pressure distributions



The ‘learning outcome’ of this lecture is that;

(a) You should appreciate the principal different kinds of 
contact behaviour

(b) You should understand the concept of ‘coupling’, and 
where it is severe, where it is mild

(c) You should begin to understand what a partial slip 
contact is

(d) You should have begin to understand how to solve the 
normal aspect of a ‘half-plane’ contact problem 
(especially the classical Hertz problem)
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Appendix A:  Airy Stress Formulation (polar coordinates)
• The Airy stress function – stress relationships are:

whilst the biharmonic (compatibility) equation is
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Appendix B: Summary of the inversion formula (First Kind) 

• Equation to be solved:

• Solution:

• The solution is required to have the following characteristics:

1. Singular at both end points, x = + a
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2. Non singular at x = a

3. Non singular at x = – a

4. Non singular at both end points, x = + a

with the consistency condition
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